On some inequalities for the incomplete gamma function
نویسنده
چکیده
Let p 6= 1 be a positive real number. We determine all real numbers α = α(p) and β = β(p) such that the inequalities [1− e−βx p ] < 1 Γ(1 + 1/p) ∫ x 0 e−t p dt < [1− e−αx p ] are valid for all x > 0. And, we determine all real numbers a and b such that − log(1− e−ax) ≤ ∫ ∞ x e−t t dt ≤ − log(1− e−bx)
منابع مشابه
Grünbaum-type Inequalities for Special Functions
In this short note our aim is to establish some Grünbaum-type inequalities for the complementary error function, the incomplete gamma function and for Mills’ ratio of the standard normal distribution, and of the gamma distribution, respectively.
متن کاملEstimation of Genetic Parameters for Lactation Curve Traits in Holstein Dairy Cows in Iran
The objectives were to estimate (co)variance components and genetic parameters for lactation curve traits in Holstein dairy cows in Iran. The used data were records on Holstein cows collected during January 2003 to December 2012 by the Animal Breeding Center of Iran (Karaj, Iran). In order to describe the lactation curve, an incomplete gamma function was fitted to 691200 test-day records on 962...
متن کاملThe System of Vector Variational-like Inequalities with Weakly Relaxed ${eta_gamma-alpha_gamma}_{gamma inGamma}$ Pseudomonotone Mappings in Banach Spaces
In this paper, we introduce two concepts of weakly relaxed ${eta_gamma-alpha_gamma}_{gamma in Gamma}$ pseudomonotone and demipseudomonotone mappings in Banach spaces. Then we obtain some results of the solutions existence for a system of vector variational-like inequalities with weakly relaxed ${eta_gamma-alpha_gamma}_{gamma in Gamma}$ pseudomonotone and demipseudomonotone mappings in reflexive...
متن کاملSome functional inequalities in variable exponent spaces with a more generalization of uniform continuity condition
Some functional inequalities in variable exponent Lebesgue spaces are presented. The bi-weighted modular inequality with variable exponent $p(.)$ for the Hardy operator restricted to non- increasing function which is$$int_0^infty (frac{1}{x}int_0^x f(t)dt)^{p(x)}v(x)dxleqCint_0^infty f(x)^{p(x)}u(x)dx,$$ is studied. We show that the exponent $p(.)$ for which these modular ine...
متن کاملGeneral Minkowski type and related inequalities for seminormed fuzzy integrals
Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 66 شماره
صفحات -
تاریخ انتشار 1997